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The vorticity—velocity formulation for incompressible viscous
flows is studied. The main concern is effective numerical solution
of the kinematic Cauchy-Riemann equations for velocity, especially
when the divergence-free condition of vorticity is violated due to
numerical error. The mathematical formulation of a differential and
an integral approaches are revisited. A novel projection of vorticity
onto the divergence-free space and its application to the two ap-
proaches are studied. As an illustration of the differential approach,
the 3D lid-driven cavity problem is solved. The projection scheme
is justified through numerical tests by comparing it {o a new fully
divergence-free scheme. Numerical tests indicate that keeping vor-
ticity divergence-free is important for abtaining correct and accurate
solutions. The theory and methods apply to other divergence-free
fields of physical interest as well, such as that in electro-magnetic
dynamics. © 1995 Academic Fress, Inc.

I. INTRODUCTION

n many physical problems one needs to recover a vector
field from its curl and divergence. Mathematically, this is known
as solving the Cauchy—-Riemann type of equations

Vu=49, VXu=w iV, (la),(1b)
for w frem piven & and e Uere Vg a bounded domain in £
The physical meaning of (la), (Ib) can be found in classical
electro-magnetic dynamics, but here we illustrate them in terms
of fluid dynamics. Hence, u, 49, and e are velocity, dilata-
tion, and vorticity, respectively, which we assume to have de-
sired smoothness on the closure of V. To uniquely deter-
mine u, boundary conditions need to be prescribed. A common
choice is

n-u=yu, ondV, (1¢)
where #V and n are the bonmdary of V and its outward normal.
The eompatibility conditions

j v = 3§W wedS, V-w=0,  (2a).(2b)
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are necessary Tor (1) (o have a solution. 11 (2) holds, By, (1)
is well posed as proved in [I].

In numerical methods of computational fluid dynamics based
on vorticity and dilatation, rather than primitive variables, solv-
ing (}) is a major kinematic step. Since (1) is elliptic, it is
usually the most time-consuming part of the whole computa-
tion. Therefore, it is highly desirable to develop efficient meth-
ods, especially in unsteady computations, where (1) has to be
solved in each time step.

Various approaches can be vsed to solve the above problem
numerically. One is to discretize (1) directly by using the finite-
difference method and to solve the resulting linear system of
equations. Several fast solvers based on this approach have
been proposed and studied for 2D problems [2-5]. However,
these salvers are difficult to be extended to 3D, since the three
equations in (Ib}) are not independent (this problem does not
oceur in 2D). Huang and Ghia [6] solve the problem by using
a ‘“‘ghost’” variable, which contains roughly the scalar and
vector potentials of u, to reformulate the linear system of equa-
tions. A multigrid method is then developed to solve the re-
formulated system. The authors also pointed out that the Lapla-
cian operator contained in the reformulated system gives a
better smoothing rate for the relaxation than the original system,
Another approach is hased on a least square method proposed
by Fix and Rose | 1]. The method was used by Gaiski et al. 7]
to solve incompressible flow problems (see also [8]).

The main difficulty of the above direct approaches is that
in 3D the vorticity o, ofien obtained numerically, may have
nonvanishing divergence due to numerical error. Thus, Eq. (1)
does not have a solution and the direct method is no longer
effective. The common remedy is to project « onto the diver-
gence-free space before solving (1) as in {7]. The projection is
defined by

d=w-V§ YV -@=0, (3)

where @ is the projected vorticity. Thus o satisfies

A=V . (4)
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One can obtain Vi and, hence, é by solving the Poisson equa-
tion {4). This approach, however, is time consuming. Further-
more, the above projection is not umquely defined for bounded
domain unless certain boundary condition of ¢ is prescribed
on V., which needs to be properly selected based on some
mathematical and physical criteria. One of the main objectives
of this paper is thus to find proper projection and efficient
methods.

Besides the direct solution, three alternative approaches have
been employed. The first is to decompose u into scalar and
vector potentials and solve the resulting equations for the poten-
tials. Then, four Poisson equations need to be solved for a
general 3D problem. In addition, the boundary condition of the
vector potential may be difficult to specify; for a comprehensive
discussion, see [9]. In short, the difficulty is present for multi-
ply-connected domain, where the boundary conditions of the
vector potential [9] involve the tangential components of u
which are generally unknown in advance. It might be argued
that for viscous flow problems, the no-slip condition can be used
to specify those tangential components on solid boundaries.
However, this usually leads to coupled solfution of the vector
potential and the vorticity field, which could be inefficient
especially for unsteady problems. Note that Huang and Ghia’s
[6] approach is similar to this one but is technically different
in that the ghost variable is never explicitly solved,

The present paper will mainly concern the other two ap-
proaches that do not introduce additional variables. One is
based on the Poisson equation for w and the other, on the
generalized Biot—Savart law. Both can be derived from the
vector identity

Au=V(V.u)— V X (V X u). ()

We call the former the differential approach and the latter the
integral approach. Although these formulations are not new,
some confusion and misunderstanding remain to be clarified.
More importantly, we show that an optimum projection of w
can be performed very efficiently when these two formulations
are used.

The paper is organized as the following. In Sections 2, we
define an optimum projection of vorticity and derive the corre-
sponding boundary value problem, Then we revisit the differen-
tial and integral approaches for (1). In particular, we show how
the optimum projection can be embedded in both approaches
and efficiently computed. As an illustration, we use the vortic-
ity—velocity formulation to solve the benchmark 3D lid-driven
cavity flows, of which the numerical methods are given in
Section 3. Only differential approach with projection is imple-
mented, whereas the integral approach requires much more
computing capacity and is not pursued here. A fully divergence-
free scheme for the vorticity equation is also constructed and
compared with the projection method. Numerical results are
presented in Section 4, We make some concluding remarks in
Section 5.

2. THEORY

2.1. The Projection of Vorticity and Its Optimization

We first present a rational basis of proper projections. As
mentioned above, the problem we are facing is due to the
numerical discretization of continuous equations. In a free
space, the projection 1s uniquely defined and 1s orthogonal {in
the L, sense) [10], assuming that e — 0 at infinity with proper
rate. For bounded domain, the projection is determined by the
boundary condition of ¢ An example, used in [7] without
explanation, is

3 0 onaV. (6)
an
Here, the key issue is to choose projections that preserves the
numerical accuracy as well as the physical content of the solu-
tion, First, if the projected vorticity is closer to the unprojected
one, then we have a better reason to believe that less useful
information is lost during the projection. The projection will
be called optimum if the projected vorticity is closest to the
unprojected one. Secondly, the projection should have no effect
on w when V. @ = 0; clearly, the projection defined by (4)
and (6) satisfies this requirement.

Mathematically, we can formulate the first requirement as
minimizing the difference between e and & by imposing a
proper boundary condition on 4. In the 1; norm we minimize

() = fv(r.o — @pdV = fv (V) av.

Let ¢rbe the minimizing function and let ¢ + &4’ be a variation
of 1. Clearly ' must be harmonic in V, and hence it satisfies

.
3§6V3;ds =0 %)

By the standard minimization argument, it is straightforward
to show that

o g
fvw-w; dv-fﬁwwan s =0 (8)

must be valid for all ¢'.
Now we show that
ir=const ondV )]
is the correct boundary condition. Obviously, if (9) is true, then
(8) holds for all ¢, and 4 1s a minimizing function. Conversely,
if (9) is not true, it is always possible to construct ' such that

(8) is violated. We give a proof of this assertion for 2D case.
Assume i is not constant but a function of the arc length s of
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dV, then there exists an interval [—sy, 55] on which ¢(s) does
not change sign and increases (or decreases) monotonically.
Let-

ay s(|s] = 500, if s € [—50, S0l
=

0, otherwise,

which is a smooth function of s. Thus (7) holds and the corre-
sponding harmonic function ¢’ exists; however,

LU T
L ds f_rowands¢0.

For 3D problems, similar construction of ¢ can be done, but
it is more complicated. We conclude that (9) is the necessary
and sufficient condition for the optimum projection. Equivalent
to (9) is the condition
n X Vy=0 onaV. (10)
When V- e = (), the optimum projection does nothing. More-
over, the projection is orthogonal in the L, sense because

La;-vlpdv=3§w¢(n-cb)ds= ¢fvv-£odv=o.

From this equation, we see that the projection defined by
(4) and (6) is also orthogonal if n- & = n-w = 0, but net
always.

Finally, it should be noted that the optimum projection de-
fined above depends on what norm is used; also the solution of
u depends on the projection of vorticity and hence the boundary
condition of . In general, it is difficult to judge the influence
of different projections on the results. One may need to rely
on numerical tests. In Section 4 we shall present some test
results using the above optimum projection defined by the
L; norm,

2.2. The Differential Approach

An effective way of solving problem (1) is substituting {1a),
(1b} into (5), and then solving the Poisson equation for u:
Au=V4-V X w (11a)
Since (11a) is one order higher than (1), more boundary condi-
tions are needed in addition to (1c). These conditicns have to
exclude the spurious solutions from raising the order of the
equations, so that a solution of (11a) is also that of {1). These
conditions turn out to be the tangential part of (1b) (see discus-
sion below). A very similar problem exists for the vorticity
transport equation which is the curl of the Navier—Stokes equa-
tion, and the proper boundary condition for vorticity has also

been found to be the tangential part of the Navier—Stokes
equation [11]. Now the boundary conditions for (11a) are
n-u=u, nX(VXu—w)=0 onaV. (1lb),(1lc)
This formulation has been used by [12] in their computation.
However, the property of (11) has not been fully clarified. Here
we prove the following.

THEOREM 2.1. Suppose (2a) holds. Given sufficiently
smooth 3 and w, problem (1 1) has a unique solution. Moreover,
the solution satisfies the following equations (almost anywhere)
inV,

Vau=48 VXu=d, (12)

where @ = w — Vi and § is given by (4) and (10).

Proof. We first show that the solution of (11) exists and
is unique, then prove that it satisfies (12).

The existence of solution is a dirct consequence of (1) being
well-posed. This is clear from the above derivation of (11)
when V-w = 0. If V. @ + 0, consider

Viu=4 VXu=® inV
n-u=u, ondV,
where @ = @ — Vi and ¢ satisfies (4) and (10). Since
V- & = 0, the above set of equations is the same as (1) except
that e is replaced by &; hence it has a unique solution. This
solution satisfies (11a), as can be verified by using (5) and
noticing that V X é& = V X w. The boundary condition {11c¢)
is also satisfied due to (10).

Next, we show that (11} has at most one solution. Let v be
the difference of two solutions of (11), such that

Av = 0,

nv=0 nxX(VXv) =0

Then, owing to the identity
L [(V-v)2 + (V X v)?] dV
= ——J v-AvdV
¥
+ jgav[(n-v)V'v + (VX v)-(n X v)] dS,
and since
(VX mXvy=—-nX(VXv)]v=0,

the right-hand side of the above integral equation vanishes.
Thus, we have V-¥ = 0 and V X v = 0 (almost everywhere),
implying v = V¢ for some harmonic function ¢. But
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dgian = 0 on 4V because of (1¢); so ¢ = const. and hence
v=0mV.
Finally, from (11ia) we have
VV u - H-VX(VXu—-w=0 (14)

Since (1 1c) is sufficient for the two terms in (14) be orthogonal
(in the I, sense), i.e.,

JVV(V-H-—ﬁ)-[VX(VXuvw)]dV

=3g.w[“x(v><“—w)]-V(V-u—ﬂ)dS=0;

it follows that

VV-u—3Hh=0 VXV Xu-w=0 (152,415b)
Thus V X u — @ = — Vi for some scalar function ¢r. Taking
divergence of both sides we obtain (4); furthermore, (11c)
implies Eq. (10). Similarly, we have V-u — & = const. in V,
but the constant must be zero due to (2a), ||

Remarks. 1. The significance of the theorem is that u can
be solved from (11) with arbitrary e, which may not
be divergence-free. Moreover, the solution always has the
correct divergence and its curl is nothing but the cptimum
projection of w (see Section 2.1). Thus, numerically, the
projection can be performed simply by differentiation at little
cost, instead of the time-consuming inversion of a Poisson
equation.

2. The above remark also indicates that, whenever possible,
we may solve only one or two components of u in 2D or 3D,
respectively, and then compute the other by integrating (ia).
Numerically, this gives roughly 50% and 33% saving of the
CPU time in 2D and 3D. If projection is needed, the saving in
3D could be as much as 50%. :

From Theorem 2.1 and its proof, the following corollary
is obvious.

CoroLLARY 2.1, If (2a),(2b) holds, then given sufficiently
smooth O and e, (11} and (1) have the same solution,

The boundary condition (I Ic) deserves a more detailed dis-
cussion, because it is of crucial importance for obtaining the
above results. Other boundary conditions were derived in [12];
however, in our opinion, cnly (11c¢) is the correct choice as far
as solving (1) alone is considered, To see this, we first recall
the least square argument of [13]. Consider minimizing the
functicnal

Ju) = fv [(V-u— 87+ (VXu— v,

under the constraint of (1¢). It can be shown that

—fvv-(Au—Vﬁ—VXm)dv
+Lv[(v-u— - v) + (VX u — @) (n X v)] dS
(16)

must vanish for any admissible function v satisfying n-v = 0.
As a conseguence, Eq. (11a) follows.

To assure the boundary integral of (16) is zero, we need to
impose boundary conditions for w. In [13], it was concluded
that V X u — @ = 0 should be specified on aV in addition to
(1c). But, writing the last integrand in the boundary integral
of (16) as [(V X u — w) X n]-v, we see that (11c) is al-
ready sufficient.

Two other alternatives were derived from (16) in [12];

u=Db onaV, (17a)

nXu=nXxh, V-u=% ondV, (17b)

However, both of them are incorrect. The solution of (11a)
with (17a} may not satisfy the original Cauchy—Riemann equa-
tion (1) evenif V- e = 0. In fact, Eq. (17a) makes (1) overdeter-
mined; i.e., the solution exists for only a restricted class of w
due to the constraint on tangential components of u on aV. If
a viscous flow is to be computed, the use of (17a) is acceptable
only if (11) is coupled with the vorticity transport equation so
that the proper e distribution can be ensured. The objection to
(17b) is that it does not secure (lc¢) (total mass conservation
for incompressible flows).

2.3. The Integral Approach

The integral approach based on the Biot—Savart law has also
been frequently adopted, as in vortex methods. It has some
advantages over the differential formulation; for example, the
allowance of a grid-free algorithm that naturally matches the
Lagrangian convection and of the exact treatruent of the far
field condition. However, some important details in implement-
ing the integral approach have been widely ignored when the
domain is bounded. In particular, when n-@ # 0 on 8V, the
commonly used method fails (see below). Besides, in vortex
methods the integrals are often discretized with smoothed ker-
nels instead of singular ones to gain more accuracy and better
stability. This leads to the so-calied vortex-blob discretization,
which usually does not satisfy the divergence-free condition of
vorticity and, hence, projection is again needed. However, how
to perform such projection efficiently when the domain is
bounded has never been addressed.

Let G = G(x, y) be the fundamental selution of the Laplace
equation in free space, such that AG = —8(x — y), and let
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g = V,G(x, ¥) {where V, is the gradient operator with respect
to ¥). By (5) and the identity

YV AGVu—uVG) — VGV -u) + VX {GV X )
= —V-(uVG) + V(VG-u) — V-(VGu),

the generalized Biot—Savart law follows from Green’s sec-
ond identity:

au=fv(g19—g><m)dV (18)

-9, Igmu) ~ g X (0 X W) ds.

Here the integration is taken with respect to y, and & = 1, 0,
oriforxin V, V' = RV, or on a smooth 3V, respectively.
If an extertor domain is under consideration, we need to assume
that as |x| — o, ¥, and @ are of order |x| and u = 0. Note
that in (18) we have substituted (1a),(1b) in place of V-u and
V X u, respectively, which implies that (2a),(2b) are salis-
fied. However, it is important to remember that in actual com-
putations Eq. (2b) may be violated because of numerical
error.

Since the generalized Biot—Savart law is derived from (5),
whether it is equivalent to the original equation (1) needs to
be verified. A detailed proof is given in [14]. In this paper, we
are interested in the computation procedure of u. One way is
to use (lc} and (18) to obtain a boundary integral equation
(BIE) of n X u; see [15]. Here, we follow the approach of
Lighthill [16], which is more often used and easier to im-
plement.

Denote the volume integral in (18) as u,, then u may be
expressed as

u=u, +u,. (19)
In general, u, alone does not satisfy (1c); thus we need to find
u, {i.e., the surface integral in (18)) such that u satisfies (1c).
It has been commonly argued that u, is irrotational ‘‘since

V X u, = e’ (Refs. [16, 17]) and, hence, u; = V¢. Then
because V-u, = 0 and, hence, V-(u — u,) = 0, there is

Ap=0, (20a)
a—(ﬁ:unfn-uu. (20b)
an

Equation (20) can be solved uniquely and the desired u is ob-
tained.

Unfortunately, when n- @ # 0 on 4V, which may occur in
3D, the above argument fails because V X u, # e. Instead,
we have -

Vxu,= —vaxx(gx w) dV
- w—fv(V-w)ng+£v(n-w)gdS 1)

= m+3§w(n-w)gds (f V. @ = 0).

Nevertheless, the above method can be maodified to cover
general 3D problems. Following [18], we define the extension
of vorticity w' = V¢ in V' (similarly for exterior problems),
where ¢’ satisfies

Ad'=0 mV, (22a)
4 =n-w ondV, (22b)
an
V¢' -0 as|x]— . (22c)
Then, let
u=u, +u; +uny, (23)
where

w = — L, g X V' dv = — §BV¢'(n X gydS. (24)
It is easy to verify that

Veu =0, VXu, =gV - §ﬂv(n-w)gds,
where 8 = O or 1 for x in V or V', respectively. Thus,

VX =VXu—-VX@u+u)=0 inV
Therefore, u) = V¢" is uniquely defined, with ¢" given by

A =0

a¢1r“
an—”

inVv, (25a)

. (U, + ) onav. (23b)

Then, the solution of (1) is obtainable from (23).

Using the above procedure, we can compute the tangential
components of u on 3V by solving and evaluating quantities
solely on the boundary. Essentially, this is equivalent to solving
the BIE for n X u mentioned above. This 1s obvious if we note
that once w, on dV is evaluated, we can compute u; and u;
from boundary values of ¢ and ¢”, which in turn can be solved
from BIEs corresponding to {22) and (23). We also note that
in the above integral method, only u, needs to be evaluated by
a volume integral. Both volume and surface integrals as well
as BIEs for ¢' and ¢” can be computed/solved efficiently by
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using the fast multipole method (FMM) [19-21]. An efficient
scheme based on FMM has been used to solve the boundary-
integral equations of potential problems with arbitrary geometry
(19, 22]. These advances make the above scheme ready to
implement numerically.

Consider now the above procedure with V- @ # 0. In free
space, the velocity computed from the Biot—Savart law auto-
matically corresponds to the projected vorticity as shown in
[10], which is similar to the differential approach in the previous
subsection. For bounded domain, in general, the above proce-
dure cannot be used without modification. Since V-w # 0,

3§wn-mds¢0

might occur; hence the harmonic function ¢’ defined by (22)
might not exist. In the following, we give a modified version
with the optimum projection built in.

Our goal is to obtain u such that V X u = @&, where é is given
by (3) and (10). First, we observe that the general projection of
e can be formulated in integral form as

o =w- jvg(V-w)dV+SEavn-(w— @)g dS

‘ (26)
+ jgavg X (0 X (@ — @) dS.

For the optimum projection, the last integral on the right-hand
side of (26) is zero. It is easy to see that if we replace n- w in
(22b) by n- é, then ¢’ exits and V X (u, + u)) = &. Then
V X u! = 0 and the rest of the construction remains the same.
From (21) and (26), we get a BIE for n- @

L)

n@=mXxV)u,—n-$ gn b)ds, @7

where the last integral should be understood as the limit as the
control point x — 3V. Note that the first term on the right-
hand side of (27) indicates that only u, on 4V is needed. More-
over, when V X u = w (ie., V- w = 0}, Eq. (27) can be recast
to a homogeneous BIE of n- (@ — &), which can be shown
to allow only a trivial solution (Ref, [14]); then @ = @ follows.

In summary, when V- e # 0, only one more BIE needs to
be solved to build the optimum projection into the resulting u
solution. Compare with solving the projection in the whole
domain, this is much more efficient. The key of efficiency
is to fully utilize the information contained in u, due to the
volume integral.

3. NUMERICAL METHODS

In this section, we develop vorticity-velocity methods for
solving 3D incompressible flows using finite-difference method
based on previous theoretical results. Only the differential ap-

proach is addressed. The integral approach demands much more
computing power and, hence, is not pursued further below. We
use Cartesian coordinate for demonstration. The scheme can
be easily extended to generalized orthogonal coordinates if the
covariance variables of [23] are used; in this case, the compo-
nent-wise formulation has exactly the same form as in
Cartesian coordinates.

The main objective of the present numerical study is to verify
that our projection method indeed works correctly. Such a
numerical test is necessary, since the effect of projection is
hard to analyze mathematically. Furthermore, it is commonly
believed that the divergence-free condition of vorticity is im-
portant, but there is no sericus numerical experiment to show
the influence of the error in the divergence of vorticity. Again,
this information is hard to obtain from the usual consistency
and stability analyses. As we show later, the computation is
stable even with large error in the divergence of vorticity, but
the result could be wrong. In the meantime, the results show
that our projection is an efficient way to ensure the correct
results. For this purpose, we choose the standard lid-driven
cavity flow as the test problem (Fig. 1). Although it is simple,
the flow exhibits complex 3D vortical structures, especially at
high Reynolds number. Therefore, the flow may be sensitive
to the error in vorticity.

For more realistic flows, one may need to specify the in-
flow, out-flow, and free-stream conditions, For a review of
computations of such flow problems using vorticity—velocity
methods, see Gatski [8]. Although applying our optimum pro-
Jection method to improve the computation of these flows is
beyond the scope of the present paper, it seems appropriate to
include a brief discussion of these conditions in the context of
the present formulation. For the velocity wu, the problem is
universal among all numerical methods for incompressible
flows, and a great deal of research has been done. There are
no new requirements raised by the present formulation. But we
stress that the discrete analog of (2a), which includes in-flow,
out-flow boundaries, etc., should be satisfied to ensure V-u =
0 at discrete levels. For the vorticity o, however, the present
projection formulation gives rise to some desirable flexibility.
Note that (2a) should also hold for @ due to V- w = 0. But, for
the present formulation, this requirement need not be imposed
explicitly; unlike velocity, it is already automatically taken care
of by the optimum projection. In contrast, if the projection
given by (6} is used, special care is still necessary since the
projection preserves n- w on dV.

3.1. The Kinematic Equations

At the first sight, it might seem to be straightforward to
discretize (11} and solve the resulting linear system of equa-
tions. But a usual discretization of (11) might not behave as
predicted by the theory, since the vector identities used in
theoretical derivations may be violated during discretizations.
A basic observation is that, due to the truncation error, the
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FIG. t. The lid-driven cavity flow. Left: Three-dimensional configuration. Right; Vortex structures of two-dimensional flow; T, BL, and BR stand for top,

bottom-left, and bottom-right vortices, respectively.

mixed derivatives with different order may not cancel each
other exactly in their discrete forms. Numerical schemes are
often more predictable and stable if they preserve the properties
of their continuous counterparts. Thus, we prefer the discrete
cancellation to be precise at the round-off level. A simple way
to achieve this is to define the discrete difterential operators
(difference operators) in each direction uniquely and to maintain
the functions uniquely defined on the grid [14]. The second
requirement is often met automatically, but in certain cases it
needs special attention (see Section 3.2 below).

A uniform staggered grid as depicted in Fig. 2 is used to
discretize (11). This grid has proved to be valuable for preserv-
ing mass conservation [23, 24], i.e., (1a). For the present prob-
lem it has two more advantages: it is easy to impose boundary
condition {11c), and it is convenient to perform the numerical
projection of @ on the staggered grid.

In the following, we assume & = 0 as our numerical example
is an incompressible flow. Let /, j, and k denote the grid indices
along x, (@ = 1, 2, 3) directions; wherever necessary for clarity,
we raise the index of vector components to a superscript. Ac-
cording to Fig. 2, the velocity components are defined as

itk
w? 7
[}
1
ul ]
)
1
1
N S
7Lk o
ol ¥
o

ik

1 2 3 . s
Uijripkrins Wisl i1, and Ui+, and the vorticity compo-
nents are @/, 1y, w+1n4, and ;4415 Define the discrete gradi-
ent operator as

Vi=(D,D;,Dy) = (i i *583—),

Ax,  Ax,” Ax; (28)

where 8, and Ax, are the central difference operator and grid
size in the a-direction, respectively; hence Dy f;p = (freinje —
Sioin i) Axy, etc. We shall use the notation (D, f);;x = Dhfis
to group several operations together. Thus, the velocity and
vorticity are related by

1 — 3 2
@ik = (D’ — Dsu )f+l.’2,_f"k!
@l s = (D' — D),

ijt12k 3 1 i jt1i2ke

ws:j,k-}—h‘l = (D — Dzﬂl)f.j.sz,

which is in fact our projection scheme. It is easily verified

j+l

i1k

i+l

FIG. 2, The staggered grid for to-u method. Left: The 3D grid. Right: The 2D grid; «!, ¢ and o are defined on the black, gray, and white dots, respectively,
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that the projected vorticity is divergence-free inside the do-
main, i.e.,

(D' + Dyt + D;a)E‘),-‘J-,f = 0.

The divergence of vorticity on the boundary has 1o be dis-
cretized differently in another way. We shail return to this
issue in the next subsection when discussing the divergence-
free schemes for 3D vorticity equation.

Using the above definition, the discretization of (11a) in x,
direction is

(D' = Dyw? — Dzml)i,ﬁuz‘kﬂn, (29a)

where D = (D + D} + DY) = A’ is the discrete Laplacian
operator. At the boundary we have

Uirniein =0, i=landN,; (29b)
Dottjjenn = —~@ljen, j= 1and Ny (29¢)
Diutljn, = s, k= land N;. (29d)

Here N, is the number of grid points in ~direction. The scheme
given by (29) is second order. By (29d) there is

2.1 _ 1 _ 1
[)Jui,j+ 12k+12 = (Dauuwz.kn D3ui.j+h’2k)

Ax,

1
= E‘(Dluil,jﬂ,'z,kﬂ - m?,jﬂm) (k=1).
3

Note that @};4in1, a tangential vorticity component on the
boundary, cancels the corresponding term in Dyw}jsin, on the
right-hand side of (29a} and thereby does not appear in the
linear system of equations. Similarly, neither does the boundary
value of w® Thus, Eq. (29) leads to a closed linear system of
equations for interior values of w' without using tangential
components of @ on V. Similar discretization cap be done for
u’ and u’. On the present uniform grid, Eq. (29) can be solved
efficiently by using the fast Fourier transform. For nonuniform
grids. other solution techniques, such as muitigrid methods,
can be used.

We shall show that the solution of u is indeed divergence-
free in the sense that

Bzjrinien = (D' + D® + DaNissp jrinpsin = 0, (30)

where 8 = V., is identically satisfied. Note that @ should not
be confused with ; the former may or may not equal the latter,
depending on the discretization of {11). Now, we need to solve
only two components of u, say ' and #%, and compute »* from
(30). To avoid the accumulation of round-off error at one end
of the integration, we can alternate the direction of integration

between time steps or stages in a multistage time-integration
method.

We outline the proof that the above implementation does
ensure (30). Although a proof of V-u = 0 has been given in
Section 2.2, it does not relate directly to the above discretization.
But we may look at the continuous problem from another
point of view, whose discrete analog provides a general way
of proving (30) immediately: taking divergence of (11a) (with
9 = 0} yields

A9=0 inV 313y
Moreover, from the proof of Theorem 2.1, we know that

a6

— =0 onaV. 32

an

Thus 6 = const. in V and, due to the compatibility condi-
tion (2a), there is § = 0 in V. Therefore, if we can show that
the discrete analog of (31) and (32) holds, then the simijar
conclusion can be drawn for the discrete problem. Such an
approach is rather independent of the grid, although only
a uniform Cartesian grid is considered here. For higher-
order methods, the same principle applies. By (29) and the
corresponding equations for u? and % it is straightforward
to verify

28 8i+112,j+112,k+112 =0 (33)
fori=2, N —-2,j=2, ,N—- 2 k=2 .., N — 2.
For the rest of the grid points in the neighborhood of the cavity
walls, edges, and comers, special derivation needs to be made,
At the first glance, if we can derive (33) on these near-boundary
points and show that the discrete version of (32),

Dlgi.j+l"2.k+lf2 =0 f()rf = T and N] -1 (343)
D=0 forj=1landN,— 1 {34b)
DsBiinjrne =0 fork=1and Ny —1, (34¢)

is valid on the boundary, then it is easy to find that the hinear
system of equations for 4 has at most nontrivial constant solu-
tion, and the constant has to be zero because the summation
of ¢ over the whole domain, i.e., the net mass flux out of the
boundary, js zero.

However, it is impossible to derive (33) and (34) separately.
Rather, when solving 6 numerically, Eq. (34) is used to cancel
the unknown boundary terms in (33), resulting in an equation
of @ at grid points next to the boundary. Thus, it is indeed the
combination of (33) and (34) that is important. Therefore, we
oniy need to derive the equations for & at next-to-boundary
points and to show that they are the same as the above combina-
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tion. We shall not go through the algebraic details here; inter-
ested readers are referred to [14].

We stress again that not every discretization of (11} can
preserve the desired properties of the continuous problem;
it 1s always desirable to check the numerical methods mathe-
matically. The above procedure is a simple and general way
to do so.

Finally, if 4 # 0, it should be given at the same location as
6, and (29a) should be revised by adding D, to its right-hand
side. With some minor changes, the proof cutlined above
can be used to show that # = & is valid in the sense simi-
lar to (30). Note that the discrete distribution of % needs to
satisfy the compatibility condition (2a) in a way consistent
with {29).

3.2, The Vorticity Transport Equation

We present a second-order scheme for solving unsteady vor-
ticity transport equation. Then we combine it with the scheme
for (11) to solve the 3D lid-driven cavity flow (Fig. 1} in the
next section. The discretization is done on a uniform Cartesian
grid. The extension to generalized coordinates is straightfor-
ward, e.g., [23].

The 3D vorticity transport equation can be written in diver-
gence form

a—‘£+V-(uw—wu)=vAm

in V,
or

(35)

where V is the interior of the cavity. A second-order Runge--
Kutta scheme is used for the discretization in time. We only
consider the spatial discretization in some detail.

The main problem of discretizing (35) is how to ensure &
being divergence-free. Consider the semi-discretized version
of (35)

%‘-;—’ + V5 (e — wu) = pAte, (36)
of which the (discrete) divergence is
a4, .
P = V" [V (uw — wu)) + vA"S, WV, (37)

where 9, = V*- w. Thus, to ensure 9, = 0, we need to guaran-
tee that 9, = 0 initially and on dV; moreover, the first term
on the right-hand side of (37) needs to be zero. In fact, all these
conditions are met in the continuous problem. However, the
last two conditions often do not hold for the discrete problem
due to spatial truncation error as discussed in Sectiont 3.1, Note
that (37) is a diffusion equation with a source term. Therefore,
although the truncation error is usually small, it may accumulate
during the time marching to give a large error in 3,. For the
same reason, the round-off error may also accumulate; but this

is a less severe problem because it is normally much smaller
than the truncation error and more or less random.

There are two methods to resolve the problem. One is the
projection of vorticity as discussed in Sections 2.1 and 3.1; the
other is using a fully divergence-free scheme, i.e., discretizing
the vorticity equation in a careful manner so that the solution
is divergence-free to the round-off level. The latter will be used
to justify our projection method numerically. Some divergence-
free schemes have been studied in [23, 24]. Both of them are
based on central difference. Here we present a general way of
constructing the spatial discretization that leads to divergence-
free schemes. We expand (36) as

9 ;
[a—r“’l + Dy(F? — F'%) + Dy(F* — F'%) = vD%'

L]
itk

; ]
[5 @'+ Dy(F2—~ F2) + Dy(F* — F%) = uD'e?

*
Juiting

I:% o’ + D(F? = F3) + DF? — F¥) = vD%y’

1
Lkt
where

Fof = gk,

o, =1,23, a# B

From these equations, the equation for 3, can be derived as

{i 8, + 2, [DyDp(FF* — FoB) + Dy D, (FF — F)

dr anf
(38)
= VDz’ﬁm}
Lk
Thus, a divergence-free scheme requires
D,Dy(F8 — F®y + DD, (F* — Ffy =0, (3%

which might seem to be trivial from (38). However, one should
keep in mind that F# represents the convective effect in the
first term of (39) but vortex stretching effect in the second. In
both cases the value. of, say, £ 410, (With different signs)
is used. Since neither u? nor w' is defined at {i + 1/2, j +
1/2, k}, interpolation is necessary. Then how to do it so that
F 21 i 18 uniguely defined and, hence, the desired canceila-
tion in (38) will occur? An obvious answer is 1o calculate
F#in jrung only once, and use the result in both convection and
stretching terms.

Thus, we just need to consider the construction of
Flip 104 as a convection term. First we interpolate bz
from ul 41z In the computation done below, we take
(40)

2 - 2 2
Uiripih = O-S(MHHZJ.HHZ + u£+lf2,j,kkh’2)-
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Thus, FZ a4 = ('Y, can be evaluated. Next, we may
interpolate F#; 2, (values at the cell interfaces) from
F#, by using various methods, such as QUICK and ENO
type upwind schemes. Calculation of other flux values is done
in the same way. If centered interpolation is used, the algorithm
is similar to those in [23, 24]. It should be noted that defining
F# uniquely is sufficient for the cancellation, but not necessary.
However, the above method is the simplest and easiest to be
extended to generalized coordinates and higher order.

To obtain a fully divergence-free scheme for vorticity, we
still need to ensure that no error is produced from the boundary.
We impose @ = V X u on aV. It follows that V- = 0
on the boundary and, hence, the divergence-free condition is
ensured theoretically. Again, this argument does not guarantee
numerical methods to have the same property.

As an example, we consider the vorticity boundary condition
at the bottom of the cavity. In component form, they are

Lo
T ax?

To get o' and &, local Taylor expansion of the velocity compo-
nents is used. We have

Ax;

3 — 3 1
iy jeing = Wirnge T 3 Wit12,k
Axi [ ous
3
-—2 + O(Mz),
8 \ox}/ ek
sz

) Y jk+1i2

Axi alu‘)
+ === + O(Ax}
8 (8x§ Lik+1r (ax3)

1 — .1
Upjririn = Uijeain —

for j = 1. If the second- and higher-order terms are ignored,
applying the no-slip condition u?, ;2 x = ul 1 = O gives first-
order formulas for o' and «? at the boundary. Second-order
formulas can be obtained by combining the above two expan-
sions with those of #3112 432, and u} jr3p 4412 . All these formulas
can be written in the form of

wil+l.'2.j,k = 12(u3)/Ax2, CU?,;.HUZ = “Iz(ui)/sz, (41)
where £,(f) denotes a linear interpolation of f in x; direction.
Note that the stencil information is contained in f;.

While it is straightforward to apply the tangential kinematic
BCs of vorticity, the normal vorticity condition needs to be
treated more carefully. The normal condition w?;, = 0 is not
directly applicable because of the staggered grid. In fact
w?yy, is needed by the central difference for updating @iy, at
a new time level. Thus extrapolation seems necessary. On the
other hand, it can be shown that 9., ;, should vanish identically
on ¢V so that no error of 4, enters the solution from the

boundary. Therefore, there must be a consistency requirement
on the extrapolation. In particular, at the bottom of the cavity,
we require 4, = 0, ie.,

Dzm?.j,k = —Dlw}_j_k - Dlw?.j,k (fOrj = l).

Suppose the same interpolation operator is used for both tangen-
tial velocity components »' and #, then by (41) we have

Dzmil,j,k = _(wll‘+l.'2,j,k - wf—uz,j,k)/Axl - (w?,j,kﬂfz - wij,k—uz)/Axa
= {(—L(Du’) + L{(Dsu"))/Axy (42)
= Iz((l)z)/Axl.

Thus, the extrapolation we are seeking is

mx‘z,lfl.k = whne — o). (43)
However, D,w? is precisely just the discrete normal derivative
of w’ at the boundary, which can be used directly in the compu-
tation. Therefore, the extrapolation is actually not performed.
Furthermore, from (41) we can verify that (42) is consistent with

wh = (Dsu' — Dut), ;= 0,
which is the original normal condition we tried to use.

4. RESULTS

Now we present the results of the 3D lid-driven cavity. The
fiow was solved for both Re = 1000 and 3200 using the w-u
method described above. For Re = 1000, steady-state solution
exists; whereas for Re = 3200, the flow is unsteady and has
rather complicated 3D vortical structures. To reduce the compu-
tation, we imposed a spanwise symmetry condition at the sym-
metry plane (see Fig. 1) so that only half-cavity flow was
actually solved. Such an approach is justifiable for Re = 3200
flow, although some Taylor—Gortler-like (TGL) vortices were
moving around in the spanwise direction. Perng and Street
[25] pointed out that the end walls provide only symmetric
perturbations to the vortices, as confirmed by their numerical
simulation of the full cavity flow.

The flow in a cavity with depth-to~width ration 1: 1 and the
span-to-width ratioc 3:1 was investigated experimentally by
Koseff and Street [26]. Later, numerical simulation at Re =
3200 was performed by Freitas et gl. [27], using primitive
variables, and by Tromeur-Dervout and Ta Phouc [28], Huang
et al. [29], Huang and Ghia [6] (Re = 3300), using the w-u
method. Unfortunately, the accuracy of these simulations was
not carefully verified. But for flows in a cubic cavity {1 X
1 X 1) at Re = 400 and 1000, accurate steady-state solutions
were obtained by Ku et al. [30] using pseudospectral method.
The problem was also solved recently by Guj and Stella [24)
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using the eru method, Their results are in good agreement.
Therefore, we shall use the solutions of [30] for checking the
accuracy of our method. Then, a more interesting flow at
Re = 3200 was simulated by different schemes. All results be-
low (for the cubic cavity) are obtained on a 65 X 65 X 33
grid with single precision.

The projection type of method has been successfully used
in several applications [8]. However, it has never been truly
justified from a theoretical or numerical point of view. One of
the main objectives of the following numerical tesis was to
see how well the projection method works comparing to fully
divergence-free schemes. The comparison was done for both
steady and unsteady flows. Another problem we investigated
is the effect of different discretizations of the convection and
stretching terms. Moreover, we made close observauon of the
effect of error in 9, on the solution.

Several schemes can be constructed by combining different
discretizations of the convection and stretching terms, the vor-
ticity BCs, and the projection. Thus, it is convenient to use
short-handed names for the schemes. The following convention
is used: a scheme labeled as A-B, say, means that the interpola-
tion methods A and B are used for the convection and stretching
terms (notice the order), respectively. Moreover, we shall use
Q for QUICK and C for centered schemes. If the projection is
used, then the label becomes A-B-P. Thus, Q-C-P means that
the QUICK and centered interpolations are used for the convec-
tion and stretching, respectively, and projection is also used.
From the previous discussion. we know that the Q-C scheme
is not divergence-free; the Q-Q and C-C schemes are diver-
gence-free but may not be fully divergence-free if error is
introduced from the boundary.

In the present single-precision computation, we found that
the accumulation of round-off error of 4, was rather severe.
When steady-state solution is reached at about ¢ = 40, the fully
divergence-free Q-Q scheme gave 34, an averaged value of
5.83 X 107" and maximum value of 1.18 X 1072 A test using
double precision was conducted and we found that 9, did not
exceed 107" for the Q-Q scheme; thus the accumulation of
round-off error has no effect on the solution.

The fiow field in the cavity was projected onto x;-x,, x»-Xs,
and x-x, mid-planes and plotted in Fig. 3. They are in good
agreement with Guj and Stella’s results [24]. In the next two
figures, the profile of u' on the vertical centerline and the profile
of u* on the horizontal centerline of the symmetry plane are
compared with the pseudospeciral results of Ku er al. [30].

Figure 4 shows the results using first-order vorticity BC. It
can be seen that all the solutions are in good agreement, except
that the two schemes without projection are slightly less accu-
rate, which is evidently due to larger error in 9,. The figure
implies that even a seemingly smail residual &, (below 107
for the Q-Q scheme) might not be good enough. On the other
hand, the averaged value of 3, at steady state due to the Q-C
scheme is very large, (about (.87); but interestingly, the flow
field seems to be not severely affected by this error. We may

—T

FIG. 3. Velecity vector plots for Re = 1000 flow projected on: (a) x-x,
mid-plane; (b) xy-x; mid-plane; (¢} x\-x; mid-plane.

explain this situation by noting that the divergence of vorticity
cotresponds to the second-order derivative of velocity; hence
a small error in velocity field can be greatly amplified. Inversely,
a large 4, does not necessarily mean a large error in u. In
Table I, we present the differences among velocity fields solved
from those schemes shown in Fig, 4. The table also shows that
although the residual 3, of the Q-Q scheme is much smatler
than that of the (3-C scheme, the difference between the velocity
solutions of the Q-Q and Q-Q-P schemes is about the same as
that between Q-C and Q-C-P schemes. Furthermore, the table
indicates that the discretization of the stretching term does not
have a strong influence on the present steady-state result, at
least less than that due to &,,.

The second-order vorticity BC was also used with different
schemes to solve the problem. In one scheme, labeled as Q-
Q-P1 (I for ““inconsistent’’), we intentionally used the second-
order BC in a way violating the consistency requirement given
in Section 3.2, so that in each time step a rather larger error
of &, was introduced on the boundary. Then, projection is used
to filter the error out. Figure 5 compares the results of using
first- (Q-Q-P1) and second-order BCs (Q-Q-P2 and Q-Q-PD.
Clearly, the second-order BC leads to better accuracy. But,
interestingly, the Q-Q-PI scheme seems to give the most accu-
rate result, particularly the solution of 42. Moreover, by compar-
ing the u solutions of Q-Q-P, Q-C-P, and C-C-P, we find that
the difference between Q-Q-P (or Q-C-P) and (C-C-P) (107
is much larger than that between Q-Q-P and Q-C-P (107%).
Therefore, the discretization of the convection term has a
stronger effect on the results than that of the stretching term.
In ali cases, the projection worked very well.
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FIG. 4. Velocity profiles on centerlines of the symmetry plane using first-
order vorticity BC. Top: u' profile; bottom: w® profile.

At Re = 3200, the flow is unsteady and quite complicated.
First, the primary vortex, as well as the upstream and down-
siream secondary vortices (see Fig. 1), developed. Then, the
corner vortex and TGL vortices (see Fig. 7 below) started to
form close to the downstream sidewall. The flow remained
unsteady because of the meandering of TGL vortices and the
variation in size of downstream secondary voriex. It was found
experimentally that the TGL vortices are very time-dependent;
thus a time-accurate numerical method is required to capture
the flow features correctly. Unfortunately, due to the lack of
accurate time-dependent experimental or numerical data, we

TABLE I
L, Norm of Difference in Velocity Solved by Different Schemes

QQvs. Q-QP QQPvs QCP QCPvQC QCrvs. QQ
u' 3.32e-3 1.39-4 3.56e-3 9.32e-4
u’ 3.30e-3 1.46e-4 3.62e-3 9.31le-4
W 2.60e-3 9.06e-6 7.98¢-4 6.77e-4

05 " " L 4
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X1

FIG. 5. Velocity profiles on centerlines of the symmetry plane (Re =
1000). Top: &' profile; bottom: u* profile.

cannot assess the actual time accuracy of our (formally second-
order) methods. Since the corner vortex, which is due to the
adjustment of shear and pressure forces acting on the recirculat-
ing fluid to the no-slip condition, has a strong influence on
TGL vortices, we may also expect a strong effect of vorticity
BCs and near-wall grid resolution on the numerical results.
According to [31], the flow reaches fully developed state
about 6 min after the startup. In terms of our nondimensional
time it is about 1 = 51.2. The projected velocity field on the
symmetry plane at this time is shown in Fig. 6. Results of
different schemes with the first-order vorticity BC are com-
pared. Clearly, the result of the Q-C scheme is significantly
different from others. The same can be seen from the compari-
son in Fig. 7, where u is projected onto x, = 0.766 plane (i.e.,
i = 50). The difference is caused by the large error in 4,
{whose average is about 3.1) of the Q-C scheme. For the Q-Q
scheme, the error accumulated from round-off seems to bhe
independent of Re. The residual 4, at r = 51.2 is about the same
as the Re = 1000 case. However, the speed of accumulation is
slower. In contrast, for the Q-C scheme the residual -3, increases
with Re because the diffusion of 4, out of the boundary is
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the solutions we obtained here are only of qualitative value.

FIG. 8. Velocity field for Re = 3200 using second-order vorticity BC,
Quantitative discussion of the time variation of the flow

projected in the symmetry plane (left} and x,

Q-Q-P; (b) CC-P.
schemes is the discretization, Without a benchmark sotution,

‘we cannot judge which discretization is better here. The next
figure, Fig. 8, shows the results of Q-Q-P and C-C-P schemes

with second-order vorticity BC. Comparing Fig. 8 with Figs.
BCs was used. Qur time averages were obtained over the period
of 7-10, 10-13, and 11-13 min after the startup. The experi-

mental data are averages over a 5
size equals to 0.005 (ours is 0.0156) near the boundaries and

we get excellent agreement by using a time average over the
period of 7-10 min. However, it should be noted that the time

to the boundary condition than to the discretization of the
developed flow, The agreement is good considering the coarse
grid. Perng and Street [25] used a nonuniform grid with grid
average is affected by the time period used

computation (see Fig. 9). At last, Fig. 10 shows the velocity
field computed using the Q-Q scheme with first-order BC at
7, 10, and 13 min after the startup. The figure shows possible
structures of TGL vorticies, whose motion is complicated. Flow

6 and 7, it may be concluded that the solution is mote sensitive
vorticity equation.

and Q-Q, especially in Fig. 7. The only difference in these

ularly those features associated with the

3200 flow, projected in the symmetry
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In addition to the above observation, we note that there are
some notable differences among the results of Q-C-P, C-C-P,

FIG. 6. Velocity field for Re
plane: {a) Q-Q; (b) Q-C; (¢) C-C-P; (d) Q-C-P.

weaker. It is plausible to conclude that for high-Re flows, the
nondivergence-free scheme without projection is not appro-

priate,

structures similar to Figs. 10a and 10b have also been reported

3200, projected in x; = 0.766 plane; (a)

FIG. 7. Velocity field for Re
Q-Q: {b) Q-C; (c) C-C-P; (d)y Q-C-P.
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FIG. 9. Time averaged velocity profile al the symmetry plane (Re = 3200).

Top: u' prefile; bottom: #* profile.

in [25]. The current simulation seems (o be able to capture fine
vortex structures.

5. CONCLUDING REMARKS

The efficient vorticity—~velocity formulation for 3D incom-
pressible flows is studied both theoretically and numerically.
Both differential and integral formulations are considered. We
paid special attention to the problem of the divergence-free
condition and the numerical methods to ensure it, including
projection method and divergence-free schemes for the vorticity
equation. An optimum projection formulation is proposed and
tested through numerical experiments. The main feature of our
formulation is that the solution of the velocity and the projection
of the vorticity can be done in one step by solving (11).

Numerical tests show that the projection indeed gives accu-
rate and correct results. In contrast, the divergence-free scheme
constructed by special design of discretization is less flexible
to use. This limitation may be more severe when extending the
present scheme to higher order and more general geometry. In
this case, the projection method is desirable in the sense that

once we obtain the proper high-order scheme in general geome-
try for the kinematics part, which must be done anyway, we
can construct high-order schemes for the vorticity equation
with more freedom. However, the strategy used in constructing
the divergence-free scheme in this paper is of general interest.
In panicular, in magneto-hydrodynamics, the magnetic field
should be divergence-free; then the fully divergence-free
method presented here can be used directly to discretize the
magnetic field equation because it has exactly the same form
as the vorticity equation. The optimum projection method can
also be used. The same efficiency may be oblained if the right
formulation like (11) can be found.

The effect of the divergence-free condition of vorticity is
studied numerically for the first time. In conclusion, it is im-
portant to ensure the condition, using either the projection or
the divergence-free scheme, to obtain correct physical results,
especially at high Reynolds number. In the limit of inviscid
fiow, this condition could be of key importance. On the other
hand, although our solution of the velocity field always has the
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FIG. 10. Projected velocity field al symmetry plane (left) and x, = 0.766
plane (right} for Re = 3200 flow: (a) + = 7 min; (b} f = [0 min; (¢) £ = 13 min,
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correct divergence, it alone does not guarantee the correct re-
sults.

1
2

REFERENCES

. G. ). Fix and M. E. Rose, SIAM J. Numer. Anal. 22, 250 (1985).
. H. Martin, J. Comput. Phys. 15, 55 (1974).

. E. D. Martin and H. Lomax, Technical Report TN D-7934, NASA,
1977 (unpublished).

. M. Balgovind, Math. Compur. 33, 385 (1979).
. R. E. Grosch, Technical Report 87-34, ICASE, 1987 (unpublished).
. Y. Huang and U. Ghia, Commun. Appl. Numer. Methods 8, 707 (1992).

. T.B.Gatski, C. E. Grosch, and M. E. Rase, J. Comput. Phys. 82,298 (1989).

. T. B. Gatski, Appl. Numer. Math. 7, 227 (1991).

. S, M. Richardson and A. R, H. Comish, J. Fluid Mech. 82, 309 (1977).

. 1. T. Beale, Math, Comput. 46, 401 (1986).

CLZ W, XOH Wu, BHY. Ma, and 1 ML W, Inn J. Numer. Methods
Fluids 19, 905 (1994).

. M. Bafez, J. Dacles, and M. Soliman, “A Velocity/Vorticity Method
for Viscous Incompressible Flow Calculations,”” in Proceedings, 11th
International Conference on Numerical Methods in Fluid Dynamics, Wil-
liamsburg, VA, 1988, p. 288.

- T. N. Phillips, IMA J. Numer. Anal. 5, 429 (1985),

. X. H. Wu, Ph.D. thesis, University of Tennessee, Knoxville, 1994.

. L. Morine, “‘Helmholtz and Poitcaré Potential-Verticity Decompositions
for the Analysis of Unsteady Compressible Viscous Flows,”” in Boundary
Element Methods in Nonlinear Fluid Dynamics, edited by P, K. Banerjee
and L. Morino, Developments in Boundary Element Methods. Vol. 6
(Elsevier Appl. Sci., New York, 1990), p. 1.

16.

17.

23.

24.
25.
26.
27.

28

29,

30.
31

WU, WU, AND WU

M. J. Lighthill, in Laminar Boundary Layers, edited by L. Rosenhead
(Oxford Univ. Press, Oxford, 1963).

E. Puckett, “*Vortex Methods: An Introduction and Survey of Selected
Research Topics,”” in Incompressible Computational Fluid Dynamics, ed-
ited by M. D, Gunzburger and R. A. Nicolaides {Cambridge Univ. Press,
Cambridge, 1593).

. J. Serrin, ““Mathematical Principies of Classical Fiuid Mechanics,”" in

Handbuch der Physik, Volume VIH/, edited by S. Fligge {Springer-
Verlag, New York/Berlin, 1959}, p. 125,

. V. Rokhlin, J. Comput. Phys. 60, 29 (1983).
. L. Greengard and V. Rokhlin, J. Compur. Phys. 73, 325 (1987).
. . Camrier, L. Greengard, and V. Rokhlin, SIAM J. Sci. Stat. Comput. 9,

669 (1988).

. A, Greenbaum, L. Greengard, and G. B. McFadden, J. Compus. Phys. 105,

267 (1993).

G. A, Osswald, K. N. Ghia, and U. Ghia, AIAA Paper 87-1139, 1987 (un-
published).

G. Guj and F. Stella, J. Comput. Phys. 106, 286 (1993),

C.-Y. Perng and R. L. Street, fnt. J. Numer. Methods Fluids 9, 341 (1989).
X R. Koseff and R. L. Street, J. Fluids Eng. 106, 390 (1984).

C.J. Freitas, R_ L. Street, A, N, Findikakis, and I, R. Koseff, Int. J. Numer.
Methods Fluids 5, 561 (1985).

D. Tromeur-Dervout and L. T. Phuoc, Technical Report, ONERA TP
1991-235, 199! (unpublished).

Y. Huang, U. Ghia, G. A. Osswald, and K. N. Ghia, AIAA Paper 91-
1562, 1991 (unpublished).

H. C. Ku, R. S. Hirsh, and T. D. Taylor, J. Comput, Phys. 70, 439 (1987).
A. K. Prasad, C. Y. Perng, and J. R. Koseff, ‘““Some Observations of the
Influence of Longitudinal Vorticies in a Lid-driven Cavity Flow,” in
Proceedings, First Nar. Fluid Dynamics Congr., 1988, p. 288.



